Problem 2.12

Problem 2.7 is about a class of one-dimensional problems that can always be reduced to doing an integral. Here is another. Show that if the net force on a one-dimensional particle depends only on position, F = F(x), then Newton's second law can be solved to find v as a function of x given by

$$v^{2} = v_{o}^{2} + \frac{2}{m} \int_{x_{o}}^{x} F(x') dx'.$$
 (2.85)

[Hint: Use the chain rule to prove the following handy relation, which we could call the "v dv/dx rule": If you regard v as a function of x, then

$$\dot{v} = v \frac{dv}{dx} = \frac{1}{2} \frac{dv^2}{dx}.$$
(2.86)

Use this to rewrite Newton's second law in the separated form $m d(v^2) = 2F(x) dx$ and then integrate from x_0 to x.] Comment on your result for the case that F(x) is actually a constant. (You may recognise your solution as a statement about kinetic energy and work, both of which we shall be discussing in Chapter 4.)

Solution

Suppose there's a particle moving in the x-direction. By Newton's second law,

$$F = ma$$
.

If the force depends on position, then

$$F(x) = ma$$

$$= m\frac{dv}{dt}$$

$$= m\frac{dv}{dx}\frac{dx}{dt}$$

$$= m\frac{dv}{dx}v$$

$$= \frac{m}{2}\left(2v\frac{dv}{dx}\right)$$

$$= \frac{m}{2}\frac{d}{dx}(v^2).$$

Divide both sides by m/2.

$$\frac{2}{m}F(x) = \frac{d}{dx}(v^2)$$

Integrate both sides from x_0 to x. Since the integration is definite, no constant of integration is needed.

$$\int_{x_{o}}^{x} \frac{2}{m} F(x') dx' = \int_{x_{o}}^{x} \frac{d}{dx'} (v^{2}) dx'$$

$$\frac{2}{m} \int_{x_{o}}^{x} F(x') dx' = v^{2} \Big|_{x_{o}}^{x}$$

$$= [v(x)]^{2} - [v(x_{o})]^{2}$$

$$= v^{2} - v_{o}^{2}$$

Therefore,

$$v^2 = v_o^2 + \frac{2}{m} \int_{x_o}^x F(x') dx'.$$

This can also be written as

$$\int_{x_0}^{x} F(x') dx' = \frac{1}{2} mv^2 - \frac{1}{2} mv_0^2$$

$$W_{\text{total}} = \Delta KE,$$

which is the work-energy theorem. If F(x) is a constant, then this formula simplifies to a known kinematic formula.

$$v^{2} = v_{o}^{2} + \frac{2}{m} \int_{x_{o}}^{x} F_{o} dx'$$
$$= v_{o}^{2} + \frac{2}{m} F_{o}(x - x_{o})$$
$$= v_{o}^{2} + 2a(x - x_{o}).$$